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Abstract
A class of Hamiltonian deformations of plane curves is defined and studied.
Hamiltonian deformations of conics and cubics are considered as illustrative
examples. These deformations are described by systems of hydrodynamical-
type equations. It is shown that solutions of these systems describe processes
of formation of singularities (cusps, nodes), bubbles and change of the genus
of a curve.

PACS numbers: 02.30.Ik, 02.40.Re, 02.30.Jr
Mathematics Subject Classification: 37K10, 14H70

1. Introduction

Dynamics of curves and interfaces is a key ingredient in various important phenomena in
physics and theories in mathematics (see, e.g. [3, 6, 26, 33]). The special class of deformations
of curves described by integrable equations has attracted particular interest. It has been studied
in a number of papers (see [4, 5, 7, 8, 10, 14, 17–25, 27–29, 31, 32, 39, 40] and references
therein).

The approaches used in these papers differ, basically, in the way the evolution of a
curve is fixed. In papers [7, 10, 14, 25, 27, 32], the motion of the curve is defined
by the requirement that the time derivative of the position vector of a curve be a linear
superposition of tangent and (bi)normal vectors with a certain specification of coefficients in
this superposition. Deformations considered in papers [4, 8, 22, 23, 39] are defined, basically,
by the corresponding Lax pair. Within the study of the Laplacian growth problem [5, 24,
28, 29, 31, 39, 40], the time evolution of the interface is characterized by the dynamics of
the Schwartz function of a curve prescribed by the Darcy law. Semiclassical deformations
of algebraic curves analyzed in [17–19] are fixed by the existence of a specific generating
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function constructed via a Lenard scheme. Finally, the coisotropic deformations introduced
in [21] are defined by the requirement that the ideal of the deformed curve be a Poisson ideal.

In this paper, a novel class of deformations of plane curves is considered. For such
deformations, the function f (p1, p2), which defines a curve f (p1, p2) = 0 in the plane
(p1, p2), obeys an inhomogeneous Liouville equation with p1, p2 and deformation parameters
x1, x2, t playing the role of independent variables. These deformations are referred to as the
Hamiltonian deformations (motions) of a curve since the coefficients in the linear equation are
completely fixed by the single function H(p1, p2; x1, x2, t) playing the role of a Hamiltonian
for time t dynamics. Equivalently, Hamiltonian deformations can be defined as those for which
an ideal I of a deformed curve is invariant under the action of the vector field ∂t + ∇H . For
algebraic plane curves, Hamiltonian deformations represent a particular class of coisotropic
deformations introduced in [21].

Here, we concentrate on the study of Hamiltonian dynamics of plane quadrics (conics)
and cubics. This dynamics is described by integrable systems of hydrodynamical type for
the coefficients of polynomials defining algebraic curves with the dKdV, dDS, dVN, (2+1)-
dimensional one-layer Benney system and other equations among them. It is shown that
particular solutions of these systems describe formation of singularities (cusps, nodes) and
bubbles on the real plane.

This paper is organized as follows. A general definition and interpretations are given in
section 2. Hamiltonian deformations of plane quadrics are studied in section 3. As particular
examples, one has deformations of a circle described by the dispersionless Veselov–Novikov
(dVN) equation and deformations of an ellipse given by a novel system of equations. Section 4
is devoted to Hamiltonian deformations of plane cubics. An analysis of formation of
singularities for cubics and genus transition is given. In section 5, a connection between
singular cubics and Burgers–Hopf equation is considered. In section 6, we discuss briefly
deformations of a quintic. Possible extensions of the approach presented in this paper are
noted in section 7.

2. Definition and interpretation

Let the plane curve � be defined by the equation

f (p1, p2) = 0, (1)

where f is a function of local affine coordinates p1, p2 on the complex plane C
2. To introduce

deformations of the curve (1), we assume that f depends also on the deformation parameters
x1, x2, t .

Definition 1. If the function f (p1, p2; x1, x2, t) obeys the equations

∂tf + {f,H } = α(p1, p2; x1, x2, t)f (2)

with a certain function H(p1, p2; x1, x2, t) and a function α, where {f,H } is the Poisson
bracket

{f,H } =
2∑

i=1

(
∂xi

f ∂pi
H − ∂pi

f ∂xi
H

)
, (3)

then it is said that the function f as a function of x1, x2 and t defines Hamiltonian deformations
of the curve (1).

To justify this definition, we first observe that equation (2) is nothing but an
inhomogeneous Liouville equation which is well known in classical mechanics. On � the rhs
of equation (2) vanishes and, hence,

(∂t + ∇H )f |� = 0, (4)
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where ∇H is the Hamiltonian vector field in the space with coordinates p1, p2, x1, x2. Thus,
Hamiltonian deformations of the curve (1) generated by H can be equivalently defined as those
for which the function f obeys the condition (4).

Following the standard interpretation of the Liouville equation in classical mechanics,
one can view equations (2) and (4) as

df

dt
= αf (5)

and
df

dt

∣∣∣∣
�

= 0, (6)

where the total derivative d
dt

is calculated along the characteristics of equation (2) defined by
Hamiltonian equations

dpi

dt
= −∂xi

H,
dxi

dt
= ∂pi

H, i = 1, 2. (7)

For a given irreducible curve � (f (p1, p2; x1, x2, t) = 0) a function α is not defined
uniquely. Indeed, for any function β(p1, p2; x1, x2, t) the function f̂ = βf defines the same
curve (1). Then, equation (2) takes the form

∂t f̂ + {f̂ , H } = α̂f̂ , (8)

where

βα̂ = α + ∂tβ + {β,H } (9)

while the condition (4) remains unchanged. Thus, the freedom in the form of α given by (9)
is just a gauge-type freedom. For given α, the choice of β as a solution of the equation

βα = −∂tβ − {β,H } (10)

gives α̂ = 0. So, there exists a gauge at which equation (2) is homogeneous one. The
drawback of such a ‘gauge’ is that in many cases equation (1) has no simple, standard form in
this gauge.

Gauge freedom observed above becomes very natural in the formulation based on the
notion of ideal of a curve. Ideal I = 〈f 〉 of an irreducible curve (1) is defined as a set of all
functions vanishing on the curve (1) (see e.g. [13]). For any function g without singularities
on � the product gf belongs to J. In these terms, Hamiltonian deformations of a curve can be
characterized equivalently by the following.

Definition 2. Hamiltonian deformations of a curve generated by a function H are those
for which the ideal I of the deformed curve is invariant under the action of the vector field
∂t + ∇H , i.e.

(∂t + ∇H )I ⊂ I. (11)

The definition of the Hamiltonian deformation in this form clearly shows the irrelevance
of the concrete form of function α in equation (2). Moreover, such formulation reveals
also the nonuniqueness in the form of H for the same deformation. Indeed, for the family of
Hamiltonians H̃ = H +G where G is an arbitrary element of I (i.e. g ·f ), one has equation (2)
with the family of functions α̂ of form α̃ = α + {f, g}. Hence, equations (∂t +∇H̃ )f |� = 0 and
(∂t +∇H )f |� = 0 and the corresponding equations (11) coincide. This freedom (H → H +gf

where g(p1, p2; x1, x2, t) is an arbitrary function) in the choice of Hamiltonians is associated
with different possible evaluations of H on the curve �. In practice, it corresponds to different

3
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possible resolutions of the concrete equation (1) with respect to one of the variables (p1 or p2).
This freedom serves to choose the simplest and most convenient form of Hamiltonian H.

For algebraic curves, i.e. for functions f polynomial in p1, p2, Hamiltonian deformations
of plane curves represent a special subclass of coisotropic deformations of algebraic curves in
three-dimensional space considered in [21].

In three-dimensional space, the curve � is defined by the system of two equations

f1(p1, p2, p3, x1, x2, x3) = 0, f2(p1, p2, p3, x1, x2, x3) = 0, (12)

where x1, x2, x3 are deformation parameters. Its coisotropic deformation is fixed by the
condition [21]

{f1, f2}|� = 0, (13)

where { , } is the canonical Poisson bracket in R
6. It is easy to see that with the choices

f1 = f (p1, p2; x1, x2, x3) and f2 = p3 + H(p1, p2; x1, x2, x3), the condition (13) is reduced
to (4) where t = x3. In general, Hamiltonian deformations of the plane curve are parameterized
by three independent variables x1, x2 and t. If one variable is cyclic (say x2, i.e. ∂x2H = 0 and,
hence, p2 = const) then deformations are described by (1 + 1)-dimensional equations.

For Hamiltonian deformations of complex curves defined above, the deformation
parameters and all other variables are complex numbers. Exactly in the same manner, one can
define the Hamiltonian deformations of real curves on R

2.

3. Deformations of plane quadrics

In the rest of the paper, we will consider Hamiltonian deformations of complex algebraic plane
curves. All equations and formulae derived in this and subsequent sections are valid in both
complex and real cases. As far as the deformations presented in the figures are concerned,
then, of course, the deformation parameters are real. So, the figures visualize Hamiltonian
deformations of real plane curves or, equivalently, of the real sections of complex curves.

We begin with quadrics defined by the equation

f = ap1
2 + bp2

2 + cp1p2 + dp1 + ep2 + h = 0, (14)

where a, b, . . . , h are the functions of the deformation parameters x1, x2, t . Choosing

H = αp1
2 + βp2

2 + γp1p2 + δp1 + μp2 + ν, (15)

one obtains a system of six equations of hydrodynamical type. This system has several
interesting reductions. One is associated with the constraint a = b = e = 0, c = 1,
γ = μ = 0, and α and β are constants. It is given by the system

dt + δdx1 − β(d2)x2 + 2αhx1 − νx2 = 0,

ht + (hδ)x1 − 2β(dh)x2 = 0,

δx2 − 2αdx1 = 0,

νx1 − 2βhx2 = 0.

(16)

At δ = 0, α = 0, β = 1
2 it is the (2 + 1)-dimensional generalization of the one-layer Benney

system proposed in [23, 41]

dx1t − 1
2 (d2)x1x2 − hx2x2 = 0,

ht − (dh)x2 = 0.
(17)

The curve � is the hyperbola p1p2 + dp1 + h = 0 and the solutions of the system (17) describe
deformations of the hyperbola. The simplest solution of the system is given by

d = t, h = x2 +
t2

2
. (18)

4
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Figure 1. First plot: x2 = −1, t = 1.3; second plot: x2 = −1, t = √
2 = 1.4142; third plot:

x2 = −1, t = 1.6.

The corresponding evolution of the hyperbola is shown in figure 1.
At β = −α = 1

2 , the system (16) becomes the dispersionless Davey–Stewardson (dDS)
system considered in [18]. It describes a class of Hamiltonian motions of a hyperbola.

For cubic H given by

H = α1p1
3 + α2p2

3 + α3p1
2p2 + α4p2

2p1 + α5p1
2 + α6p2

2 + α7p1p2 + α8p1 + α9p2 + α10

(19)

the condition (4) gives rise to a quite long system of equations. This system admits several
distinguished reductions.

Under the constraint b = c = d = 0, a = e = 1, α2 = α3 = α4 = α5 = α6 = α7 = α9 =
0, α1 = 1 we obtain

ht + 3
2hx1h − α10x2

= 0,

3hx2 + 4α10x1
= 0,

(20)

which is the well-known dispersionless Kadomtsev–Petviashvilii (dKP) equation (see e.g. [16,
22, 41]). It describes Hamiltonian deformations of a parabola p1

2 + p1 + h = 0.
For the reduction a = b = 1, c = d = e = 0, α2 = α4 = α5 = α6 = α7 = α10 = 0,

α1 = − 1
3α3 = 1 one has the system

ht + (hα8)x1 + (hα9)x2 = 0,

3hx1 − α8x1
+ α9x2

= 0,

3hx2 + α8x2
+ α9x1

= 0

(21)

that is the dVN equation [22]. It gives us Hamiltonian deformations of a circle p1
2+p2

2+h = 0.
Another interesting reduction describes deformations of the quadric (an ellipse in the real

case)

p1
2

a2
+

p2
2

b2
− 1 = 0, (22)

i.e. the quadric (14) with a → 1
a2 , b → 1

b2 , c = d = e = 0 and h = −1. Considering
particular Hamiltonian (19) with α3 = α4 = α5 = α6 = α7 = α10 = 0, one has the following

5
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new system of equations:

at + (α8a + α1a
3)x1 + α9ax2 = 0,

bt + (α9b + α2b
3)x2 + α8bx1 = 0,

a4α1x2
− b4α2x1

= 0,

a4α1x2
+ a2α8x2

+ b2α9x1
= 0,

a(α2b
3)x2 + b(α1a

3)x1 − 3α1a
3bx1 − 3α2b

3ax2 = 0.

(23)

For the system (23), equation (2) is of form

ft + {f,H } = (
Ap1

2 + Bp2
2 + Cp1p2

)
f, (24)

where

A = −2α1x1
− 6

α1ax1

a
, B = −2α2x2

− 6
α2bx2

b
, C = −2

a2

b2
α1x1

. (25)

Solutions of the system (23) describe various regimes in Hamiltonian motions of the ellipse. In
particular, for the initial data given by a(x1, x2, t = 0) = b(x1, x2, t = 0) one has deformations
of a circle into an ellipse.

For α1 = const and α2 = const the system (23) admits the reduction a = b. At
α1 = 4, α2 = 0 the corresponding system coincides with the dVN equation (21) modulo the
substitutions h = −a2 and α8 → 3h + α8. We note that the last change of α8 is suggested by
the transformation of type H → H + gf discussed in section 2 from the Hamiltonian H for
the system (23) to the Hamiltonian for the dVN equation.

In the case of cyclic variable x2, the last three equations (23) give

α2 = const, α9 = const, α1 = b3

a3
, (26)

while the first two equations take the form (x = x1)

at + (α8a + b3)x = 0,

bt + α8bx = 0.
(27)

The Hamiltonian becomes H = b3

a3 p1
3 + α8p1. Without loss of generality we choose

α2 = α9 = 0. Introducing new variables u = a
b

and v = b2, one rewrites the (1+1)-
dimensional system (27) as

ut +
(
α8u + 3

2v
)
x

= 0,

vt + α8vx = 0.
(28)

Finally, using the eccentricity ε = √
1 − u2 of an ellipse, one obtains the system

εt −
√

1 − ε2

ε

(
α8

√
1 − ε2 +

3

2
v

)
x

= 0,

vt + α8vx = 0,

(29)

which describes Hamiltonian deformations of an ellipse in a pure geometrical term.
The system (28) represents a particular example of the two component (1+1)-dimensional

systems of hydrodynamical type (with arbitrary function α8(u, v)). It is well known that such
systems are linearizable by a hodograph transformation x = x(u, v), t = t (u, v) (see e.g. [8]).
In our case, the corresponding linear system is

xu − α8tu = 0,

xv +
(

3
2 + uα8v

)
tu − (α8 + uα8u) tv = 0.

(30)
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Figure 2. First plot: x1 = −1, t = 1; second plot: x1 = −1, t = 1.2; third plot: x1 = −1, t = 1.6.

This fact allows us to construct explicitly a wide class of solutions for the system (28).
At α8 = u the system (28) is the dispersionless limit of the Hirota–Satsuma system [15].

It has a simple polynomial solution

u = t,

v = − 2
3x + 1

3 t2,
(31)

which provides us with deformation of a circle (t = 1) into an ellipse shown in figure 2.

4. Deformations of plane cubic curve

Hamiltonian deformations of plane cubics exhibit much richer and interesting structure.
The general form of the plane cubic is (see e.g. [13])

f = p3
2 − p2

3 − u4p3p2 − u3p2
2 − u2p3 − u1p2 − u0. (32)

(1+1)- and (2+1)-dimensional coisotropic deformations of plane cubics have been considered
in the paper [21], where the corresponding hydrodynamical-type system has been derived.
Here, we will concentrate on the analysis of the formation of singularities and bubbles for the
real section of cubic curves described by particular solutions of these systems. To this end,
we restrict ourselves to the (1 + 1)-dimensional deformations which correspond to the case of
cyclic variable x2 and the reduction u4 = u2 = 0. Thus, denoting p2 = z and p3 = p, one
has the cubic curve

p2 − (z3 + u3z
2 + u1z + u0) = 0. (33)

The particular choice of H as

H =
(u3

2
− z

)
p (34)

gives rise to the following system (x = x1):

u3t = u1x − 3
2u3u3x,

u1t = u0x − u1u3x − 1
2u3u1x,

u0t = −u0u3x − 1
2u3u0x,

(35)

which is the well-known three-component dispersionless Korteweg–de Vries (dKdV) system
(see [9, 17]). The system (35) describes the Hamiltonian (coisotropic) deformations of the

7
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curve (33). Recall that the moduli of the elliptic curve (33) are given by [37]

g2 = u1 − 1
3u3

2,

g3 = u0 + 2
27u3

3 − 1
3u3u1

(36)

while the discriminant 
 is


 = −16
(
4g2

3 + 27g3
2
) = 16u3

2u1
2 − 64u1

3 − 432u0
2 − 64u3

3u0 + 288u0u3u1. (37)

The elliptic curve has singular points and, hence, becomes rational (genus zero) at the points
where 
 = 0.

We also note that in this case equation (2) is

∂tf + {f,H } = −u3xf. (38)

We will analyze polynomial solutions of the system (35). The simplest one, linear in x and t,
is

u3 = 2a,

u1 = a2 + 2b + 2d t,

u0 = 2(ab + c) + 2d x − 2ad t,

(39)

where a, b, c, d are arbitrary constants. With the choice a = b = c = 0 and d = 1
2 one has

u3 = 0, u1 = t, u0 = x. (40)

Equation (33) in this case is

p2 − z3 − tz − x = 0 (41)

and the discriminant becomes


 = −16(4t3 + 27x2). (42)

So, for this solution deformation parameters t and x coincide with moduli g2 and g3.
On the curve

4t3 + 27x2 = 0 (43)

in the plane (x, t) (figure 3) which has the standard parameterization

x = 2s3, t = −3s2, (44)

the elliptic curve (33) is singular, i.e.

p2 − (z − s)2(z + 2s) = 0. (45)

The curve (43) divides the plane (t, x) into two different domains (figure 3). In domain D, the
discriminant 
 > 0 and, hence, the real section of the elliptic curve is disconnected while in
domain C (
 < 0) it is connected. The genus of the curve in both domains is equal to 1. On
the curve (43) it vanishes.

Numerical analysis shows that the transition from the connected to the disconnected
curve (and vice versa) may happen in three qualitatively different ways shown in figures 4–6
depending on the sign of x on the curve (43). Figure 4 represents the evolution of the real
section of the curve (41) in the case when deformation parameters t, x change along the line
x = 0.2. Transition from the connected to the disconnected (with bubble) curve goes through
the formation of a double point (node) at t = −0.64633. At x = −0.2 (figure 5), the bubble
grows up from the point which appears at t = 3 × 10−2/3. From the complex viewpoint, the
above two regimes are the same. They are related to each other by the involution x → −x

8
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Figure 4. First plot: x = 0.2, t = −0.5; second plot: x = 0.2, t = −3 × 10−2/3 = −0.64633;
third plot: x = 0.2, t = −1.

of the curve (41). Transition through the line x = 0 at t = 0 is the limiting case of the
above transitions. The formation (or annihilation) of a bubble goes through the formation
of the cusp p2 − z3 = 0 (figure 6). In figures 4–6 and others the plots are ordered in a
way to describe transition from the connected to the disconnected curve. The processes of
annihilation and creation of a bubble are converted to each other by a simple change of sign of
Hamiltonian.

Richer transition phenomena are observed for the solution (39) with a = b = c = −d =
1, i.e.

u3 = 2, u1 = 3 − 2t, u0 = 4 + 2(t − x). (46)

In this case, the curve is given by

p3
2 − z3 − 2z2 − (3 − 2t) z − 2t − 4 + 2x = 0 (47)

and the discriminant is


 = −64(50 + 95t2 − 70x + 100t − 90xt − 8t3 + 27x2). (48)
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Figure 6. First plot: x = 0, t = 0.5; second plot: x = 0, t = 0; third plot: x = 0, t = −0.5.

The ‘phase diagram’ (with the curve 
 = 0) is given in figure 7. Transitions across the curve

 = 0 at x > xM and x < xm are qualitatively the same as shown in figures 4 and 5. A new
regime occurs for the transition points with xm < x < xM . In this case changing deformation
parameters along the line x = const one has the process of formation of the bubble then its
absorption and again formation (figure 8). A new behavior appears in this evolution. Starting
from a connected curve, a bubble is born and grows far from the boundary until it is connected
with the wall through a node. After that the node is desingularized and the real section of
the curve returns connected. Then, always through a node, a bubble is generated again by the
boundary and never comes back.

Higher order polynomial solution of the system (35) is given by

u3 = 2A + 2Et,

u1 = −E2 t2 + 2D t + 2E x + A2 + 2B,

u0 = −(AE2 + ED) t2 − (2AD + 2A2E) t + 2AE x + 2D x + 2C + 2AB,

(49)

where A,B,C,D,E are constants.
For the particular choice A = B = C = −D = −E = 1 the elliptic curve becomes

p2 − z3 − (2 − 2t)z2 − (−t2 − 2t − 2x + 3)z − (−2t2 + 4t − 4x + 4) = 0 (50)
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Figure 7. On the line, the genus of the curve (47) is 0, outside the line it is 1. In the D region, the
real section of the elliptic curve is disconnected, in the C region it is connected. The point M is the
local maximum of the curve and the point m is a local minimum (cusp).
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Figure 8. First plot: x = 4, t = −1; second plot: x = 4, t = 1.5; third plot: x = 4, t = 2.1;
fourth plot: x = 4, t = 5; fifth plot: x = 4, t = 8.3; sixth plot: x = 4, t = 10.
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Figure 9. On the curve, the genus of the cubic (47) is 0, outside the curve it is 1. In the D regions,
the real section of the elliptic curve is disconnected, in the C region it is connected. The point M is
the global maximum of the curve, the points Q and R are local maxima and the point m is a local
minimum (cusp).

and the discriminant is


 = 16(−200 + 260t4 − 272x2 − 800t + 440x − 104t5 + 64t2x2 + 8t6 + 40t4x

− 320t3x − 224x2t + 32x3 + 1040xt + 96t2x − 640t2 + 504t3). (51)

The ‘phase diagram’ containing the six-order curve 
 = 0 is shown in figure 9.
For such deformation of the elliptic curve, one observes much richer structure of transition

regimes. At x > xM , the curve remains disconnected for all values of deformation parameters.
At xM > x > xR , the transition involves the absorption and the recreation of a bubble. For
xR > x > xQ, the transition involves a double absorption and creation of a bubble. At x < xm,
one has the replication of this regime. For xQ > x > xm, the transition process goes through a
complicated oscillation depicted in figure 10 of the bubble interacting with the wall by means
of many different nodal critical points. The above simple examples demonstrate the richness
of possible transition processes between the connected and disconnected (with a bubble) real
sections of the elliptic curve described by the system (35).

5. Singular elliptic curve and Burgers–Hopf equation

For all processes of formation and annihilation of bubbles described in the previous section,
the elliptic curve passes through the ‘singular point’ x∗, t∗ with 
(x∗, t∗) = 0 at which the
curve becomes degenerated (rational). For example, for the simplest solution (40) the elliptic
curve assumes the form (45) for the deformation parameters obeying equation (43). The cubic
curve (45) is degenerated and possesses a double point for s 	= 0 and a cusp for s = 0 (see
e.g. [37]).

More generally, an elliptic curve written in terms of moduli, i.e.

p2 − (z2 + g2z + g3) = 0, (52)
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Figure 10. First plot: x = 1.3, t = −2; second plot: x = 1.3, t = −1.27; third plot:
x = 1.3, t = −0.5; fourth plot: x = 1.3, t = 0.2; fifth plot: x = 1.3, t = 0.3; sixth plot:
x = 1.3, t = 0.3871; seventh plot: x = 1.3, t = 0.65; eighth plot: x = 1.3, t = 0.786; ninth
plot: x = 1.3, t = 1.5; tenth plot: x = 1.3, t = 4.5; eleventh plot: x = 1.3, t = 5; twelfth plot:
x = 1.3, t = 9.5.
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is degenerated if 4g2
3 + 27g3

2 = 0. In this case, the curve (52) can be presented in the form

p2 − (z + 2u)(z − u)2 = 0, (53)

where u is the uniformizing variable defined by g2 = −3u2 and g3 = 2u3.
The singular cubic curve (53) has a well-known rational parameterization

z = q2 − 2u,

p = q3 − 3uq.
(54)

Indeed, introducing the variable q by relation

p = q(z − u), (55)

one represents equation (53) as

q2 − (z + 2u) = 0. (56)

Two equations (55) and (56) are obviously equivalent to (54).
The parameterization (54) clearly indicates the interrelation between the degenerated

cubic curve (53) and the Burgers–Hopf (dKdV) equation:

ux = 3uuy. (57)

Equation (57) is known to be equivalent to the compatibility condition for two Hamilton–Jacobi
equations (see e.g. [16, 23, 41])

(∂yS)2 − 2u = z,

∂xS = (∂yS)3 − 3u∂yS.
(58)

In our approach, equation (57) describes the Hamiltonian deformations of the parabola
f = z − q2 + 2u(y, x) generated by the Hamiltonian H = q3 − 3u(y, x)q or coisotropic
deformations of the common points of the curves [21]

f = z − q2 + 2u(y, x) = 0,

g = p + q3 − 3uq = 0,
(59)

with the standard Poisson bracket {f, g} = ∂yf ∂qg − ∂yg∂qf + ∂xf ∂pg − ∂xg∂pf . Thus, the
auxiliary problem (59) for equation (57) represents nothing but the parameterization (54) of
the cubic curve (53). So, any solution u(x, t) of the Burgers–Hopf equation (57) provides us
with the family of cubic curves (53) parameterized by the variables x and y. The solution

u = y0 − y

3x
(60)

of equation (57) (y0 is a constant) describes simple Hamiltonian deformation of the degenerated
cubic (53) shown in figure 11. The deformation (60) connects singular points of different
regimes shown in figures 4–6, i.e. curve with a separate point, cusp and node. This observation
shows the relevance of the Burgers–Hopf (dKdV) equation for the description of the singular
sector in the process of deformation of elliptic curves. Within the study of the Laplace growth
process, this fact has been observed earlier in papers [5, 24, 28].

The inverse process of desingularization on the degenerated cubic curve, i.e. the passage
from the curve (53) to the curve (33), can be viewed at least in two different ways. One
is based on the Birkhoff stratification for the Burgers–Hopf hierarchy. In this approach,
the passage from (53) to (33) is associated with the transition from the big cell of the Sato
Grassmannian to the first stratum [17]. Another approach discussed in [5, 24, 28] suggests the
dispersive regularization. Possible interconnection between these two approaches remains an
open problem.
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Figure 11. First plot: y = 1.5 y0, x = 1/3 (u negative); second plot: y = y0, x = 1/3 (u null);
third plot: y = 0.5 y0, x = 1/3 (u positive). In the first plot, there is also an isolated point in
(z, p) = (−0.5, 0).

6. Deformations of plane quintic

The analysis of the process of formation of singularities and bubbles presented in sections 2–5
can be extended to high-order (higher genus) plane algebraic curves. Such analysis becomes
more involved but, on the other hand, it shows the presence of new phenomena. For instance,
for the fifth-order curve given by

f = p2 −
(

z5 +
4∑

i=0

uiz
i

)
= 0 (61)

in addition to the transition regime described above one has a novel regime of creation of two
bubbles either one after another or one from another or simultaneously. The choice of the
Hamiltonian similar to that used in the genus 1 case, i.e.

H =
(u4

2
− z

)
p, (62)

gives rise to the following system (x1 = x) (see e.g. [17]):

∂tu4 = u3x − 2
2u4xu4,

∂tui = ui−1x − 1
2uixu4 − u4xui, i = 1, 2, 3,

∂tu0 = − 1
2u0xu4 − u4xu0.

(63)

In this case, equation (2) becomes

∂tf + {f,H } = −u4xf. (64)

The simplest polynomial solution of this system is

u4 = C4,

u3 = C3 + A2t,

u2 = C2 +
(
A1 − 1

2A2C4
)
t + A2x,

u1 = C1 +
(
A0 − 1

2A1C4
)
t + A1x,

u0 = C0 − 1
2A0C4t + A0x.

(65)

Even this very simple example depicted in figure 12 in the particular case A0 = A1 = A2 =
C4 = 1, C0 = −12, C1 = C2 = 0, C3 = 3 shows a new phenomenon, i.e. the formation
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Figure 12. First plot: x = 7, t = 0; second plot: x = 7, t = −3.6; third plot: x = 7, t = −5;
fourth plot: x = 7, t = −9; fifth plot: x = 7, t = −9.11; sixth plot: x = 7, t = −9.3; seventh
plot: x = 7, t = −10.45; eight plot: x = 7, t = −11.2; ninth plot: x = 7, t = −14.

of two bubbles. There are also various regimes of formation of singularities and bubbles
(including the cusp (5, 2)) described by the system (63).

For higher order hyperelliptic curves of genus g, one observes processes of formation of
g bubbles.

The Burgers–Hopf (dKdV) hierarchy, again, is relevant for the description of the singular
sectors of these transition regimes. The process of regularization of the corresponding singular
curves via the transition to higher Birkhoff strata in Sato Grassmannian and its connection
with results of the papers [5, 24, 28] will be discussed elsewhere.
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7. Perspectives

Hamiltonian deformations of plane algebraic curves introduced in this paper can be used for
the study of a special class of deformations of the, so-called, quadrature (algebraic) domains
on the plane. Quadrature domains (D) on the plane are those for which an integral of any
function φ over this domain is the linear superposition of values of φ and its derivatives in
a finite number of points (see e.g. [1, 35]). Such domains show up in many problems of
mathematics and fluid mechanics (see e.g. [12, 24, 30, 34, 35]). A particular property of
quadrature domains is that their boundaries ∂D are algebraic curves. So any Hamiltonian
deformation of the boundary ∂D generates a special deformation of quadrature domains. One
can refer to such deformations as the Hamiltonian (or coisotropic) deformations of quadrature
domains. The study of the properties of such deformations, for instance the analysis of
deformations of the quadrature domain data, would be of interest.

We note that the Hamiltonian deformations can be defined for surfaces and hypersurfaces
too. Indeed, let a hypersurface in C

n be defined by the equation

f (p1, . . . , pn) = 0. (66)

Introducing deformation parameters x1, . . . , xn, t , one may define Hamiltonian deformations
of a hypersurface (66) by the formulae (2)–(4) passing from two to n variables pj and xj. For
algebraic surfaces (n = 3) and hypersurfaces, such deformations are described by the systems
of equations of hydrodynamical type. Properties of such systems and the corresponding
Hamiltonian deformations are worth studying.

These problems and also the comparison of Hamiltonian deformations of plane curves
and surfaces with those studied in the papers [5, 6, 14, 24–27, 30–32, 38–40] and with classical
deformation theory (see e.g. [2, 11, 36]) will be addressed in future publications.
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